Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The spatial distribution of individuals within ecological assemblages and their associated traits and behaviors are key determinants of ecosystem structure and function. Consequently, determining the spatial distribution of species, and how distributions influence patterns of species richness across ecosystems today and in the past, helps us understand what factors act as fundamental controls on biodiversity. Here, we explore how ecological niche modeling has contributed to understanding the spatiotemporal distribution of past biodiversity and past ecological and evolutionary processes. We first perform a semiquantitative literature review to capture studies that applied ecological niche models (ENMs) to the past, identifying 668 studies. We coded each study according to focal taxonomic group, whether and how the study used fossil evidence, whether it relied on evidence or methods in addition to ENMs, spatial scale of the study, and temporal intervals included in the ENMs. We used trends in publication patterns across categories to anchor discussion of recent technical advances in niche modeling, focusing on paleobiogeographic ENM applications. We then explored contributions of ENMs to paleobiogeography, with a particular focus on examining patterns and associated drivers of range dynamics; phylogeography and within-lineage dynamics; macroevolutionary patterns and processes, including niche change, speciation, and extinction; drivers of community assembly; and conservation paleobiogeography. Overall, ENMs are powerful tools for elucidating paleobiogeographic patterns. ENMs are most commonly used to understand Quaternary dynamics, but an increasing number of studies use ENMs to gain important insight into both ecological and evolutionary processes in pre-Quaternary times. Deeper integration with traits and phylogenies may further extend those insights.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available December 31, 2025
-
Abstract. The Indo-Pacific Pollen Database (IPPD) is the brainchild of the late Professor Geoffrey Hope, who gathered pollen records from across the region to ensure their preservation for future generations of palaeoecologists. This noble aim is now being fulfilled by integrating the IPPD into the online Neotoma Palaeoecology Database, making this compilation available for public use. Here we explore the database in depth and suggest directions for future research. The IPPD comprises 226 fossil pollen records, most postdating 20 ka, but some extending as far back as 50 ka or further. Over 80 % of the records are Australian, with a fairly even distribution between the different Australian geographical regions, the notable exception being Western Australia, which is only represented by 3 records. The records are also well distributed in modern climate space, the largest gap being in drier regions due to preservation issues. However, many of the records contain few samples or have fewer than 5 chronology control points, such as radiocarbon, luminescence or Pb-210 for the younger sequences. Average sedimentation rate for the whole database, counted as years per cm, is 64.8 yr/cm, with 61 % of the records having a rate of less than 50 yr/cm. The highest sedimentation rate by geographical region occurs on Australia’s east coast, while the lowest rates are from the Western Pacific. Overall, Australia has a higher sedimentation rate than the rest of the Indo-Pacific region. The IPPD offers many exciting research opportunities, such as examination of human impact on regional vegetation, contrasting first human arrival and colonisation, and assessment of rates of vegetation change during the Holocene. Merging the IPPD into Neotoma also facilitates inclusion of data from the Indo-Pacific region into global syntheses.more » « less
-
Abstract. The Indo–Pacific Pollen Database (IPPD) is the brainchild of the late professor Geoffrey Hope, who gathered pollen records from across the region to ensure their preservation for future generations of palaeoecologists. This noble aim is now being fulfilled by integrating the IPPD into the online Neotoma Paleoecology Database, making this compilation available for public use. Here we explore the database in depth and suggest directions for future research. The IPPD comprises 226 fossil pollen records, most postdating 20 ka but with some extending as far back as 50 ka or further. Over 80 % of the records are Australian, with a fairly even distribution between the different Australian geographical regions, with the notable exception being Western Australia, which is only represented by three records. The records are also well distributed in the modern climate space, with the largest gap being in drier regions due to preservation issues. However, many of the records contain few samples or have fewer than five chronology control points, such as radiocarbon, luminescence or Pb-210, for the younger sequences. Average deposition time for the whole database, counted as years per centimetre, is 64.8 yr cm−1, with 61 % of the records having a deposition time shorter than 50 yr cm−1. The slowest deposition time by geographical region occurs on Australia's east coast, while the fastest times are from the western Pacific. Overall, Australia has a slower deposition time than the rest of the Indo–Pacific region. The IPPD offers many exciting research opportunities to investigate past regional vegetation changes and associated drivers, including contrasting the impact of the first human arrival and European colonisation on vegetation. Examining spatiotemporal patterns of diversity and compositional turnover/rate of change, land cover reconstructions, and plant functional or trait diversity are other avenues of potential research, amongst many others. Merging the IPPD into Neotoma also facilitates inclusion of data from the Indo–Pacific region into global syntheses.more » « less
-
null (Ed.)
-
ABSTRACT BackgroundHuman pressures are driving the emergence of unprecedented, ‘novel’, ecological and environmental systems. The concept of novel (eco)systems is well accepted by the scientific community, but the use and measurement of novelty has outgrown initial definitions and critiques. There are still unresolved methodological and conceptual differences in quantifying novelty that prevent a unified research approach. FrameworkHere we present a conceptual framework and guidelines to unify past and future measurement of ecological novelty. Under this framework, novelty is a property of an ecological or environmental entity of interest. Novelty is quantified as the comparison between the target entity and a reference set, measured as the summary of degrees of difference across one or more dimensions. Choices in these components, particularly the reference set, can change resulting novelty measurements and inferences. ShowcaseWe provide a case‐study to showcase our framework, measuring pre‐ and post‐European novelty in 99 pollen assemblages in Midwest USA forests. We paired this quantitative exploration with a five‐step process designed to improve the utility and outcomes of novelty analyses. ConclusionsQuantitative novelty has immense value in studies of abrupt ecological change, linking climatic and ecological change, biotic interactions and invasions, species range shifts and fundamental theories. Our framework offers a unified overview and is also primed for integration into management and restoration workflows, providing consistent and robust measurements of novelty to support decision making, priority setting and resource allocation.more » « less
An official website of the United States government
